The Nehari manifold approach forp(x)-Laplacian problem with Neumann boundary condition
نویسندگان
چکیده
منابع مشابه
the nehari manifold for a navier boundary value problem involving the p-biharmonic
in this paper, we study the nehari manifold and its application on the following navier boundary valueproblem involving the p-biharmonic 0, on( ) 1 ( , ) , in , 2*2u uf x u u upu u p q where is a bounded domain in rn with smooth boundary . we prove that the problem has atleast two nontrivial nonnegtive solutions when the parameter belongs to a certain subset o...
متن کاملTHE ONE PHASE FREE BOUNDARY PROBLEM FOR THE p-LAPLACIAN WITH NON-CONSTANT BERNOULLI BOUNDARY CONDITION
Our objective, here, is to generalize our earlier results on the existence of classical convex solution to a free boundary problem with a Bernoullitype boundary gradient condition and with the p-Laplacian as the governing operator. The main theorems of this paper assert that the exterior and the interior free boundary problem with a Bernoulli law, i.e. with a prescribed pressure a(x) on the “fr...
متن کاملA Free Boundary Problem for the Laplacian with Constant Bernoulli-type Boundary Condition
We study a free boundary problem for the Laplace operator, where we impose a Bernoulli-type boundary condition. We show that there exists a solution to this problem. We use A. Beurling’s technique, by defining two classes of suband supersolutions and a Perron argument. We try to generalize here a previous work of A. Henrot and H. Shahgholian. We extend these results in different directions.
متن کاملA FREE-BOUNDARY PROBLEM FOR THE EVOLUTION p-LAPLACIAN EQUATION WITH A COMBUSTION BOUNDARY CONDITION
We study the existence, uniqueness and regularity of solutions of the equation ft = ∆pf = div (|Df | p−2 Df) under over-determined boundary conditions f = 0 and |Df | = 1. We show that if the initial data is concave and Lipschitz with a bounded and convex support, then the problem admits a unique solution which exists until it vanishes identically. Furthermore, the free-boundary of the support ...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations
سال: 2013
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2013.1.39